I B.Tech II Semester Supplementary Examinations, June 2022
Engineering Chemistry
(ME)

Time: 3 hours
Max. Marks: 70

> Answer Any Five Questions All Questions carries equal marks. $* * *<$

1
a) Explain and elaborate Nernst equation of an electrochemical cell.
b) Explain the mechanism of electrochemical corrosion by absorption of oxygen gas.
c) Discuss briefly about the controlling methods of corrosion.
a) Give a comparative account on primary, secondary and fuel cells with examples.
b) How electrolysis is useful to protect base metal from corrosion by electroplating? Write its advantages and applications.

7 a) Differentiate between Markownikoff and Anti-Markownikoff's addition reactions with example.
b) What is substitution reaction? Discuss with example.
c) Define Electrophiles? Write a short note on Electrophilic addition

8 a) What are the merits and demerits of liquid fuels?
b) What is the composition of LPG? What are the characteristics and uses of LPG?
c) Explain how fuels are classified with suitable examples.

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY
(Autonomous Institution - UGC, Govt. of India)
I B.Tech II Semester Supplementary Examinations, June 2022
Electrical Circuits
(EEE, ECE, CSE \& IT)

Roll No										

Time: $\mathbf{3}$ hours
Max. Marks: 70
Answer Any Five Questions
All Questions carries equal marks.

1(a) What are the types of sources? Explain them with suitable diagrams and [7M] Characteristics?

1(b) Find ' R ' in the circuit shown below.

2(a) Illustrate voltage - current relationship for R,C elements.
2(b) Describe the source transformation and how can it be used to convert
(i) a practical voltage source into a practical current source;
(ii) a practical current source into a practical voltage source

3(a) Calculate the equivalent resistances across the terminals of the supply and total current supplied by the source

3(b) Derive the expression for Delta connected resistances in terms of Star connected resistances?

4(a) Define the following terms,
(i) Link (ii) Graph (iii) Tree (iv) Node (v) Branch

4(b) Using nodal analysis, determine the node voltages in the following network

5(a) Derive the equation of average value and RMS value of sinusoidal waveform.
$\mathbf{5}(\mathbf{b})$ To the circuit shown in fig. consisting of a 1 k ohm resistor connected in series
with a 50 mH coil, a $10 \mathrm{~V} \mathrm{rms}$,10 KHz signal is applied. Find i) impedance Z, ii) current I, iii) Phase angle(θ) \& iv) Voltage across R \& L.

6(a) Illustrate the terms
i) Active Power ii)Reactive Power iii)Apparent Power iv) Power factor

6(b) Illustrate the significance of j-operator. What are the different forms of expressing the sinusoidal quantity in complex form?

7(a) Find the magnitude and direction of current flow through 6 Ohm Resistor by Superposition Theorem as shown in Fig.

7(b) State and prove Compensation theorem.
8(a) Illustrate about the dot convention in coupled circuits.
8(b) Derive an expression for equivalent inductance of two coupled coils

Roll No									

Time: 3 hours
Answer Any Five Questions
All Questions carries equal marks.
1 A wheel of 50 mm diameter rolls on a straight road surface without slip. Trace the path of point of contact for one complete revolution of the wheel.

2 Construct a parabola with 60 mm base and 40 mm length of axis. Draw a tangent to the curve at a point 20 mm from the base.

3 A line CD, 90 mm long measures 72 mm in front view and 65 mm in top view. Draw the two views of the line if it fully lies in the first quadrant. Find the true inclination of the line. Point C lies at a distance 20 mm from the reference planes.

4 A line BC, 80 mm long is inclined at 45° to the HP and 30° to the VP. Its end B is in the HP and 40 mm in front of the VP. Draw its projections and determine its traces.
5 Draw the projections of a rhombus, having diagonals 120 mm and 60 mm long, the smaller diagonal of which is parallel to both the principal planes, while the other is inclined at 30° to HP.
6 Draw the projections of a hexagonal pyramid, with side of base 30 mm and axis 70 mm long, which is resting with a triangular face on HP such that, the axis is parallel to VP.
7 Draw the isometric view of a square pyramid of side of base 35 mm and axis 60 mm when its axis is (i) Vertical and (ii) Horizontal

8 Draw the isometric projection of the following views as shown in figure. All dimensions are in mm .

Code No: R17A0012

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
I B.Tech II Semester Supplementary Examinations, June 2022
Engineering Physics-II
(Common to all branches)

Roll No										

Time: 3 hours
Max. Marks: 70
Answer Any Five Questions
All Questions carries equal marks.
1 Describe the 7 crystal systems with diagrams and also write the relation between lattice parameters in various crystal systems

2 Derive an expression for the cohesive energy between atoms

3 Explain the powder X-ray diffraction method used for the analysis of crystal structures

4 Explain edge and screw dislocations with the help of Burgers vector

5 Explain the electronic polarizability in atoms and obtain an expression for electronic polarizability in terms of the radius of the atom

6 a) Derive Classius Mostotti relation in dielectrics
b) Write a short note on Piezo electricity and Ferro electricity
$7 \quad$ a)Distinguish between Type - I and Type - II superconductors
b) Write few applications of superconductors

8 Explain the characterisation of nano particles by using SEM \& TEM
(Common to all branches)

Roll No										

Time: 3 hours
Max. Marks: 70
Answer Any Five Questions
All Questions carries equal marks.

1 Find a positive root of the equation $x^{3}-x-1=0$ correct to two decimal places by
[14M] using the bisection method.

2 Using Newton's forward difference interpolation formula and the given table of values

x	1.1	1.3	1.5	1.7	1.9
$\mathrm{f}(\mathrm{x})$	0.21	0.69	1.25	1.89	2.61

Obtain the value of $f(x)$ when $x=1.4$
3 Evaluate $\int_{0}^{6} \frac{1}{1+x} \mathrm{dx}$, taking $\mathrm{h}=1$. using
(i)Simpson 1/3 rule
(ii)Simpson 3/8 rule
and compare the result with its actual value.
4 Fit a second degree polynomial to the following data by the method of least
[14M] squares.

x	0	1	2	3	4
y	1.0	6.0	17.0	25.0	31.0

5 Find a Fourier series to represent the function

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=x^{2} \text { in the interval }(0,2 \pi) \tag{14M}
\end{equation*}
$$

6 Find the half range sine series for $f(x)=x(\pi-x)$, in $0<x<\pi$ and
Hence deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}} \pm------=\frac{\pi^{3}}{32}$.
$7 \quad$ Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.

8
A. Find the Laplace transform of $3 \operatorname{Cos} 3 t \operatorname{Cos} 4 t$
B. Find the Laplace transform of $\frac{\sin t}{t}$

Roll No										

1 State the important features of object oriented programming. Describe the major parts of C++ Program.

2 Write the syntax for declaring Arrays in C++. Write a C++ program demonstrating the viability of new and delete operators for a single variable as well as an array.

3 Write the syntax for Class and Class structure in C++. Illustrate with suitable examples.

4 What are Inline functions? Write a C++ program to exchange the values between two classes using friend functions.

5 How to include Multiple Constructors in a Class. What are recursive constructors?
Explain with an example

6 What is inheritance? How does it enable code reusability, explain with clear examples?

7 How does polymorphism promote extensibility? Illustrate. With an example explain how late binding can be achieved in $\mathrm{C}++$.

8 Write short notes on Exceptions. Write a program containing a possible exception. Use a try block to throw it and a catch block to handle it properly?

